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Abstract. We propose a forecasting procedure based on multivariate
dynamic kernels, with the capability of integrating information mea-
sured at different frequencies and at irregular time intervals in finan-
cial markets. A data compression process redefines the original financial
time series into temporal data blocks, analyzing the temporal informa-
tion of multiple time intervals. The analysis is done through multivariate
dynamic kernels within support vector regression. We also propose two
kernels for financial time series that are computationally efficient without
a sacrifice on accuracy. The efficacy of the methodology is demonstrated
by empirical experiments on forecasting the challenging S&P500 market.

Keywords: support vector regression; financial time series; kernels

1 Introduction

The forecasting of financial markets is one of the most challenging tasks in pre-
dictive analytics. The non-stationarity and the noisy nature of financial time
series have driven the debate about whether it is really possible to predict mar-
ket movements with sufficient confidence. The “Efficient Market Hypothesis”
provides theoretical grounds for the belief that the best strategy is the “buy-
and-hold” passive investment strategy, since no excess return can be obtained
consistently by predicting and timing the market [1].

Although many researchers in the statistical learning community –see e.g.
[2–4]– have attempted to forecast the financial market using support vector
machines (SVM) with standard kernels, the area still remains a challenge for
practitioners. Therefore, there is a natural interest in applying kernels for fi-
nancial forecasting by incorporating temporal information between misaligned
time series or varying frequencies in the data patterns. In this article, we pro-
pose a forecasting methodology based on SVMs that permits the incorporation
of granular temporal information of variable-length time series. The proposed
forecasting methodology is a very flexible approach capable of analyzing market
dynamics in very short-term intervals, by integrating market micro-structure in-
formation in a compressed fashion. Standard kernels in the literature are replaced
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2 Multivariate Dynamic Kernels for Financial Time Series Forecasting

by dynamic kernel functions able to analyze multivariate temporal structures.
We show how the use of these kernels leads to improvements in terms of both ac-
curacy and forecasting performance. In addition, we propose some multivariate
dynamic kernels that make it possible to reduce the complexity of kernel analyt-
ics to a manageable level without compromising on accuracy. The computational
speed of these kernels makes them ideal candidates for intensive computational
tasks. The approach can be extended to incorporate high-frequency information
as well, aimed at market risk measurement.

2 Preliminaries

Support Vector Machines for Regression. We use Support Vector Regres-
sion (SVR) for predicting one-month ahead market performance by using its
own history and a series of exogenous variables measured on a daily basis; thus,
it is a mixed-frequency approach. More specifically, we choose the ν-SVR, a re-
formulation that involves the automatic adaptation of the ε parameter. The ν
parameter is bounded in the interval (0, 1], representing both an upper bound on
the fraction of training samples which are errors and lower bound on the fraction
of points which are support vectors [5]. The final dual expression for an SVR is

ySVM(x) =

n∑
i=1

(αi − α∗i )k(x, xi)

where αi, α
∗
i are the dual variables (0 ≤ αi, α

∗
i ≤ C), C > 0 is the regular-

ization parameter, the {xi} are the training points, and k is the kernel function.

Data Blocks for Temporal Information. Practitioners usually apply time
series regression with SVR using standard static kernels such as the Gaus-
sian, linear and polynomial. This means that, for one-month ahead predictions,
there is only a single vector of prices for each input month. To extract addi-
tional information and incorporate more subtle patterns, we propose that daily
quotes of financial assets be compressed into temporal time intervals on each
month. Our compression process redefines the original dataset into new instances
X1, . . . ,Xj , . . . taking the form of multivariate time series (MVT), as described
next. A univariate time series xi = {xi(1), xi(2), . . . , xi(Tj)} ∈ RTj of length Tj
is a set of observations from a random process measured at discrete intervals of
time. The j-th MVT is then a P -by-Tj matrix Xj ∈ RP×Tj of the form

Xj =



x1(1)
x2(1)

...
xP (1)

 . . .

x1(t)
x2(t)

...
xP (t)

 . . .

x1(Tj)
x2(Tj)

...
xP (Tj)


 (1)

where each row represents a univariate time series and each column is a vector
of observations of the P variables in a time point. Letting x(i) be the i-th column
of Xj(i = 1, . . . , Tj), the MVT Xj can be expressed as Xj = (x(1), . . . , x(Tj)).
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Therefore, the original dataset is transformed into several intervals of dif-
ferent sizes where each instance is now expressed as in Eq. (1). This allows to
model the temporal structure within months and, additionally, can be adapted
to incorporate market dynamics in very small time intervals.

3 Multivariate Dynamic Kernels

The general goal is to define positive definite (p.d.) kernels between two time
series (not necessarily of the same length), X = (x(1), . . . , x(N)) and Y =
(y(1), . . . , y(M)), where the pairwise comparisons (x(i), y(j)) are reasonable.
The main difficulty is that the commonly used Euclidean distance disregards
the temporal dependency among the observations of time series. Moreover, the
length of the different time series is variable since it is a function of the number
of business days of each month, among other causes. In an attempt to overcome
the aforementioned difficulties, Sakoe and Chiba proposed dynamic time warp-
ing (DTW), to find a good alignment between X and Y before computing any
Euclidean distance [6]. An alignment (or warping function) π between two time
series X and Y is a pair of increasing tuples (π1, π2) of length P ≤ N +M − 1
such that 1 = π1(1) ≤ . . . ≤ π1(P ) = N and 1 = π2(1) ≤ . . . ≤ π2(P ) = M , with
unitary increments and no simultaneous repetitions. Intuitively, an alignment is
a series of connecting lines that associate each time point of X to one or more
time points in Y , and vice versa, as:

Dπ(X,Y ) =

|π|∑
i=1

‖xπ1(i) − yπ2(i)‖
2

The multivariate dynamic time warping (MDTW) distance is the minimum
distance for the set of all alignments AL(X,Y ):

MDTW(X,Y ) =
1

|π∗|
min

π∈AL(X ,Y )
Dπ(X,Y ), with π∗ = arg min

π∈AL(X ,Y )

Dπ(X,Y ).

To convert a MDTW distance into a similarity we use the Gaussian function
with parameter σ > 0 as kMDTW(X,Y ) = exp(−MDTW(X,Y )/σ). The main
drawback of the DTW measure is that it is not rigorously a metric (it does not
satisfy the triangle inequality) and is also known not to be conditionally n.d.;
hence its negative exponential is not a p.d. kernel in general. Moreover, since
the DTW is based exclusively on the optimal alignment π∗, counter-intuitive
behaviors can be obtained in some cases –see [7].

Global Alignment Kernel. In view of the limitations of the DTW, we consider
an improvement given by the global alignment (GA) kernel [7], which instead of
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4 Multivariate Dynamic Kernels for Financial Time Series Forecasting

the minimum it considers the soft-minimum of Dπ(X,Y ) defined as

Smin(Dπ(X,Y )) = − log
∑

π∈AL(X ,Y )

e−Dπ(X ,Y )

To get a kernel, take exp(−Smin/σ) as kGA(X,Y ) =
∑
π∈AL(X ,Y ) e

−Dπ(X ,Y )/σ.

The GA kernel takes advantage of the distances spanned by all possible
alignments: two time series are similar based on their set of efficient alignments.
The σ parameter is taken from the adaptative grid:

{0.2, 0.4, . . . , 2} ·median(‖x(t1)− y(t2)‖) ·
√

median(|x(t1)|),

where x(t1) and y(t2) are time points for the days in which the target price
reached its minimum variation during the month of each time series.

Vector Autoregressive Kernel. The previous kernels are shape-based sim-
ilarities to compare two time series. In this work we also propose the extrac-
tion of higher-level dependencies across time series through a parametric sta-
tistical model. Our approach, a straightforward adaptation of the VAR kernel
[8], is based on comparing the similarity of two time series using the transi-
tion matrices and intercepts of a vector autoregressive model VAR(L), such that

x(t) =
∑L
l=1Alx(t − l) + b + εt, where A1, . . . , AL ∈ RP×P are the transition

matrices, b ∈ RP is the intercept, and ε ∼ N (0, Σ) is the noise. To implement

the VAR kernel, we append the estimated parameters Â and b̂ into a single ma-
trix B̂ = (Â1|Â2| . . . |ÂL|[b̂]). and then compute a distance between time series
X and Y using the Frobenius norm over the difference of their B̂ matrices

FD(X,Y ) =

√
Trace

{
(B̂X − B̂Y )(B̂X − B̂Y )T

}
To convert the Frobenius distance to a similarity measure, we use a Gaussian

function to get kVAR(X,Y ) = exp(−FD(X,Y )/σ). For the experiments, we use
a fixed lag of L = 5 as indicated in [8] and set σ as the median Frobenius distance.

Multivariate Dynamic Euclidean Distance Kernel. Finally we propose
a simple but effective methodology to compare variable-length time series by
constructing what we call the multivariate dynamic euclidean distance (MDED)
kernel. Given that financial time series follow a filtration process, we propose
an alignment that shortens the longer time series so to become equal in length
to the shorter one. Formally, the MDED alignment between time series X and
Y with respective lengths N ≥ M is πMDED = {(N − (M − 1), 1), (N − (M −
2), 2), . . . , (N − 1,M − 1), (N,M)}. We then define the multivariate dynamic

Euclidean distance as MDED(X,Y ) = 1
M

∑M
i=1 ‖(xπMDED(i,1) − yπMDED(i,2)‖2.

These distances can be fairly compared across variable-length time series in the
compressed database. To convert the MDED distance to a similarity measure,
we create again a RBF-like kernel as kMDED(X,Y ) = exp(−MDED(X,Y )/σ),
where the bandwidth parameter σ is set to the median of MDED(X,Y ).
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4 Evaluation of Forecasting Performance

We evaluate the forecasting performance of the proposed methodology to capture
the linear inter-dependencies among multiple time series. We base our experi-
ments on SVR using different multivariate dynamic kernels, namely kGA, kVAR

and kMDED. We compare also against the VAR model, a standard in economet-
rics, although it does not allow to integrate mixed-frequency information from
markets. The goal is to forecast the next month return of Standard and Poor’s
500 Index (S&P500) by incorporating past information plus three exogenous
predictors (hence P = 4): the volatility index (VIX), the yield of the U.S. 10-
year treasury bond (US10Yr) and the price of cooper 3-month future contract
(LME3m). All models were tested along three different time windows so as to
evaluate the effect of distinct market regimes in prediction accuracy, based on
compressed daily historical prices from January 2006 to December 2014.

The output variable of the model is the next month log-return of S&P500,
Rt+1. We use the log-return because it has better statistical properties than
price, as stationarity and ergodicity [9]. The inputs are constructed on a daily
basis to capture temporal patterns of different scale on S&P500, VIX, US10yr
and LME3m using the ROCt,n = ln(xt)− ln(xt−n) function for n days on day t.

For the i-th time series (i = 1, . . . , 4), we derive a vector of several rates of
changes on each day t, incorporating the time series at n ∈ {20, 40, 60, 100, 140},
allowing to capture temporal trend shifts of financial markets when analyzed
on a monthly basis. Then the input features for day t take the form xt =
[x1t , x

2
t , x

3
t , x

4
t ], where xit = [ROCit,20,ROCit,40,ROCit,60,ROCit,100,ROCit,140].

Methodology and Parameter Selection. In the ν-SVR model, ν is con-
strained to the interval (0, 1]. We optimize it in the set {0.1, 0.2, . . . , 1}. For the
possible choices of C, we follow the analytic approach proposed by [10], which
advocates parameter selection directly from the training data. Considering a
standard SVR solution, a reasonable value for C can be roughly equal to the
range of training output values. However, besides forecasting with a value C =

range(Rt+1), we also tried values in the set

{
range(Rt+1) ·{0.8, 0.9, 1, 1.1, 1.2}

}
.

To find the optimal parameters ν and C and the fitted models we use
the methodology of [11], combining rolling windows with “training-validation-
testing” blocks. Despite being a standard practice in financial applications,
rolling windows are uncommon in the machine learning literature. An in-sample
period of 6 months was decided to train the model to make predictions for the
next month. The proposed methodology to predict the market performance is
a multi-step procedure. First, we train the models on 6 months (the training
set); second, we apply the resulting models on the next two months (the vali-
dation set) and select the values of parameters that achieve the minimum mean
squared error; and third, we combine the last 4 months of the training set and
the 2 months of the validation set into a new set, called “true training set”, and
train the final model using the selected values of ν and C. Finally, we apply the
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6 Multivariate Dynamic Kernels for Financial Time Series Forecasting

model on the next month (the test set) and record its performance. We then
move one month forward, repeating the same procedure for the whole period.

Performance Metrics. A number of measures have been used in the literature
to compare the forecasting accuracy of different models. Popular measures –such
as the mean squared error– are not invariant to scaling. We use here the mean
absolute scaled error (MASE), which scales the measured error using the mean
absolute error of a naive forecast:

MASE = mean

∣∣∣∣∣ et

1
n−1

n∑
t=2
|Yt − Yt−1|

∣∣∣∣∣
where Yt denotes the observation at time t ∈ {1, . . . , n}, Ft is the model fore-
cast and et = Yt − Ft is the forecast error. A MASE smaller than 1 indicates
that forecasting performance is better than a naive forecast. In addition, we
compute the accuracy or hit rate (HITS) –which should be maximized– as
HITS = mean|{Ft | (Yt − Yt−1) · (Ft − Ft−1) > 0, t = 1, . . . , n}|.

Empirical Results. Table 1 shows the MASE and HITS results we obtain
from using the multivariate dynamic kernels within the SVR framework; we also
report the performance of the VAR model. All results are presented both for
the whole database period and for balanced time windows, so as to capture the
performance of kernels across different market regimes.

MASE

Naive kGA kVAR kMDED VAR

2006–08 1.000 0.783 0.795 0.769 1.151
2009–11 1.000 0.896 0.850 0.846 1.130
2012–14 1.000 0.728 0.712 0.733 1.568

Total 1.000 0.819 0.798 0.794 1.246

HITS

Naive kGA kVAR kMDED VAR

2006–08 0.657 0.778 0.750 0.722 0.639
2009–11 0.500 0.583 0.528 0.556 0.611
2012–14 0.583 0.722 0.722 0.722 0.417

Total 0.579 0.694 0.667 0.667 0.556

Table 1. MASE (left) and HITS (right) of the Multivariate Dynamic Kernels.

The results clearly show the ability of SVR with multivariate dynamic kernels
to forecast the financial market. The kernels are able to achieve overall mean
absolute squared errors of about 80%, accounting for an improvement of 20%
in performance with respect to the naive forecast. The most troublesome period
for forecasting is between 2009 and 2011, when financial markets underwent
profound trend shifts due to the world crisis. The VAR model is outperformed
both by the naive forecast and the multivariate dynamic kernels in all periods.
There are many possible explanations, the most important in our opinion is that
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it is based on strong assumptions (linearity, stationarity, etc.) that do not fit
well to financial markets, particularly when working with small data sets.

In predicting market trends, the multivariate dynamic kernels reach a hit
rate of up to 70% over the whole period, compared to a hit rate of 58% for the
naive forecast. This is particularly remarkable because the hit rate is very used
in algorithmic trading by signaling actions upon predicted market trend shifts.

As we demonstrate, the multivariate dynamic kernels lead to significant im-
provements in prediction accuracy and better performance than the naive fore-
cast along different market regimes. They also outperform the VAR model in
nearly all periods. The proposed MDED kernel and the modified version of the
VAR kernel display a performance similar to that of the global alignment kernel,
which is the state-of-the-art similarity measure in the literature for variable-
length time series. In fact, when analyzed in each period, we can note there is no
decisive winner among the kernels. The CPU times1 (in seconds) are 156, 143,
33 and 0.7, respectively, for kGA, kVAR, kMDED and VAR, indicating the compu-
tational efficiency of the proposed MDED kernel. The VAR model is the fastest
forecaster but it is not capable of performing better than the naive forecast.

An Experiment in Trading. We now apply the method to forecast the finan-
cial market and compare performance against the buy-and-hold strategy, widely
used as a benchmark in financial research. We follow the approach of [11] defining

a simple investing strategy: let f̂t+1 be the forecasted S&P500 next month log-
return; if f̂t+1 ≥ 0, we buy at the closing price on month t; otherwise, we short
it. Then the log-return R̂t+1, associated with our strategy, can be computed as:

R̂t+1 =

{
|Rt+1| if Rt+1 · f̂t+1 ≥ 0
−|Rt+1| otherwise.

B&H 0 bp. 30 bp. 50 bp.

kGA

Total cum. (%) 50.04 145.64 133.62 125.59
Mean (%) 5.56 16.18 14.85 13.96
Stdev (%) 15.54 14.90 14.94 14.97
Sharpe ratio 0.36 1.09 0.99 0.93

kVAR

Total cum. (%) 50.04 123.78 113.86 107.24
Mean (%) 5.56 13.75 12.65 11.92
Stdev (%) 15.54 15.11 15.16 15.21
Sharpe ratio 0.36 0.91 0.83 0.78

0 bp. 30 bp. 50 bp.

kMDED

Total cum. (%) 131.99 122.08 115.45
Mean (%) 14.67 13.56 12.83
Stdev (%) 15.03 15.10 15.15
Sharpe ratio 0.98 0.90 0.85

VAR
Total cum. (%) 67.19 45.86 31.60
Mean (%) 7.47 5.10 3.51
Stdev (%) 15.47 15.57 15.65
Sharpe ratio 0.48 0.33 0.22

Table 2. Statistics for SVR timing rotation strategies with transactions costs.

1 Laptop with 4 GB of RAM and Intel Core i5 processor running at 2.5 GHz.
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The predicted performance of the financial market for the next month is
thus used on a timing rotation strategy. A positive prediction turns into a “buy
signal”, in which an Exchange Traded Fund (ETF) tracking the S&P500 index
is bought, whereas a negative one results in short-selling the ETF. We have
included different levels of transaction costs that take off some basis points or
bp (equal to a 0.01%) of the capital for each trade. Table 2 shows a summary of
the investment strategy performance with different kernels in the period between
January 2006 and December 2014. What strikes at first sight, is that all kernels
invariably yield better results than the buy-and-hold (B&H) strategy.

Under the assumption of zero transaction cost, the average annual log-return
of multivariate dynamic kernels ranges between 2.47 and 2.91 times the B&H
strategy. Indeed, the GA kernel achieves an annual mean return of 16.18%, the
VAR kernel 13.75% and the MDED kernel 14.67%, compared to the buy-and-
hold strategy of 5.56%. Combining these results with the standard deviations
yields improvements of more than 2.5 times in the Sharpe ratio. When adding
conservative transaction costs of 30 bp. and 50 bp. the results remained superior
to the buy-and-hold strategy. The VAR model modestly outperforms the passive
strategy and only when transaction costs are smaller than 30 bp.

The MDED kernel might then be effectively applied when considering high-
frequency time series for horizons of minutes or seconds. All the kernels can play
a major role in market risk management by the approximation of quantiles for a
certain distribution like, for example, in the value-at-risk (VaR) along with the
incorporation of the latest intra-day market developments.
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